5th European Seminar on Agrobiodiversity 22-25 of September 2011, Dimitrovgrad, Serbia Combined Annual Meeting of SAVE and of DAGENE

Ecotypes - breed variants adapted to different environments, in example of Tsigai haemoglobin genotypes

András Gáspárdy

Szent István University, Faculty of Veterinary Science, H-1078 Budapest, István u. 2., Hungary

Breeding value estimation

• A **genotype-environment** interaction is evaluated when the ranking order of genotypes are proven by different environments.

Assumptions – genetic equilibrium

 The gene(allele)- and genotype frequencies remain in all the next generations the same, when any <u>disturbing impacts</u>* act and we suppose that the genotypes have the same <u>vitality</u>, <u>fertility</u> and <u>mating chance</u>.

*mutation, immigration – selection, emigration

"Weinberg-Hardy-Tsetverikov rule"

Godfrey Harold Hardy (1877-1947)

Sergey Sergeyevits Tsetverikov (1880-1959)

I. Kind of selection

Natural selection

The natural selection allows only those individuals to reproduce that posses traits adaptive to the environments in which they live (*partial* or *total* selection).

Artificial selection

The artificial selection is operative when humans determine which individuals will be allowed to leave offspring.

Natural selection (partial)

Different advantages of hemoglobin-variants (AA, AB, BB) in sheep.

BB-variant has less fixing-ability on oxygen what will be manifested in lower fertility rate.

Hemoglobin	AA	AB	BB
Fertility rate in lowland:	200	260	115
Fertility rate in mountains:	190	210	60
Survival rate:	190/200 0,95	210/260 0,82	60/115 0,52
Fitness, w:	1,00	0,86	0,55
Coefficient of selection (s = 1- w)	0,00	0,14	0,45

Evans J.V., Harris H., Warren F.L. (1957): Haemoglobin types in British breeds of sheep. Biochem J., 65:42.p.

Allelic frequencies of Haemoglobin by Tsigai sheep variants

Haemoglobin	Jákotpuszta (2003) (n=82)	Bátmonostor (1964) and Csátalja (1976) (n=448)	Szalkszentmárton (1990) and Apajpuszta (1998) (n=290)	Cegléd (1990) (n=227)
Hb ^A	0,1611	0,0706	0,0616	0,0163
Hb ^B	0,8389	0,9295	0,9385	0,9837
Eco-type	mountain	1 0	wland	dairy

Haemoglobin genotypes

- importance in the taxonomy,
- consequences are not unambiguous,
- the respiratory functions of Hb variants do not differ,
- fertility of Hb variants was not confirmed by all the authors,
- Hb genotype is one of the relevant functional markers to monitor animal well-being
- animals with BB genotype are more resilient to parasites and climatic stress.

J. Anim. Breed. Genet. 118 (2001), 327–340 © 2001 Blackwell Wissenschafts-Verlag, Berlin ISSN 0931–2668 Ms. eingegangen: 23.03.2000

¹Institut für Tierzucht und Haustiergenetik der Justus-Liebig-Universität Giessen und ²Amt für Landwirtschaft und Ernährung, Pfaffenhofen an der Ilm, Deutschland

Biochemische Polymorphismen und Haupt-mtDNA-Haplotypen bei Bergschafrassen und Waldschafen als Beitrag zur Abstammung der Hausschafe

By R. WASSMUTH¹, S. HIENDLEDER¹, Ch. MENDEL² und G. ERHARDT¹

Tabelle 1. Haupt-mtDNA-Haplotypfrequenzen sowie Allelfrequenzen im Hämoglobin (HBB), dem Vitamin-D-bindenden Protein (GC), der Carboanhydrase (CA2) und im Albumin (ALB) mit Vergleichswerten^{a,b} (Major mtDNA-haplotype-frequencies and allele-frequencies of haemoglobin (HBB), vitamin D-binding protein (GC), carbonic anhydrase (CA2), and albumin (ALB) in comparison to literature data^{a,b})

Rasse	n	mt DNA ^A	mt DNA ^B	HBBA	HBB ^B	GC ^s	GC^{F}	GC^{V}	CAF	CA ^s	ALB ^F	ALB ^S	ALB ^W
Steinschaf I	7	_	1.0	0.500	0.500	1.0	_	_	_	1.0	_	1.0	_
Steinschaf II	5	_	1.0	0.400	0.600	1.0	_	_	0.300	0.7	-	1.0	_
Brillenschaf	7	-	1.0	0.429	0.571	1.0	_	-	_	1.0	-	1.0	_
Weißes	11	_	1.0	0.546	0.435	1.0	_	-	_	1.0	-	1.0	-
Bergschaf													
Braunes	7	-	1.0	0.857	0.143	1.0	_	-	_	1.0	-	1.0	_
Bergschaf													
Waldschaf	7	0.571	0.429	0.571	0.429	0.929	0.071	-	_	1.0	-	1.0	-
Waldschaf I ^a	49	_	_	0.500	0.500	0.673	0.038	0.289	_	_	-	0.981	0.019
Waldschaf IIª	26	-	-	0.582	0.418	0.725	0.153	0.122	-	-	0.010	0.949	0.041
Bergamasker	1	-	1.0	-	1.000	1.0	-	-	-	1.0	-	1.0	-
Bergamasker ^b	199	-	-	0.191	0.809	-	-	-	0.076	0.924	-	1.0	-
^a Fésüs et al. 1992; ^b Zanotti Casati et al. (1990)													

I. Boujenane et al. /	Small Ruminant Research	79 (2008) 113-117	

Table 1
Allele frequencies at the post-albumin, transferrin and haemoglobin loci of six Moroccan local sheep breeds

System	Allele	Timahdite	Béni Guil	Sardi	Boujaâd	D'man	Béni Ahsen
	F	0.085	0.097	0.087	0.039	0.092	0.061
GC	S	0.900	0.885	0.882	0.951	0.837	0.897
	V	0.015	0.018	0.031	0.010	0.071	0.042
	А	0.127	0.155	0.231	0.179	0.108	0.166
	G	0.045	0.050	0.042	0.061	0.019	0.028
	B*	-	-	0.016	-	-	-
	В	0.315	0.200	0.167	0.223	0.243	0.203
TF	С	0.127	0.260	0.207	0.257	0.190	0.402
	D	0.372	0.308	0.262	0.250	0.371	0.175
	М	-	-	0.005	-	0.013	-
	Е	0.014	0.027	0.066	0.030	0.056	0.024
	Р	-	-	0.002	-	-	0.002
	А	0.008	0.063	0.009	0.025	0.063	0.025
HBB	В	0.957	0.915	0.932	0.926	0.824	0.926
	н	0.035	0.022	0.059	0.049	0.113	0.049

Haemoglobin genotypes

- consequences are not unambiguous,
- the respiratory functions of Hb variants do not differ,
- fertility of Hb variants was not confirmed by all the authors,
- Hb genotype is one of the relevant *functional markers* to monitor animal well-being
- animals with BB genotype are more resilient to parasites and climatic stress.

F. Petazzi • G. Rubino E. Pieragostini	• I. Alloggio • A. Caroli •		2009	Vet Res Commun
Table 4 Correlation coefficients (R) between the considered vari-	Variable	PRIN	R	Р
code in Table 1) and 3 first	Alb/g	1	0.902	0.000
principal components (PRIN)	Glob/g	1	0.887	0.000
obtained from the Princomp analysis	SAP	1	-0.846	0.001
	Het	2	0.799	0.003
	HEALTH	2	0.799	0.003
	HBBA	3	-0.776	0.005
	HBBB	2	0.773	0.005
	AREA	2	0.771	0.005
	HBBI	2	-0.761	0.007
	Hb	2	0.745	0.009
	SIZE	3	0.736	0.010
	TP	1	0.720	0.012
	Chlo	1	0.669	0.024
	Alb%	3	-0.668	0.025
	Glob%	3	0.665	0.026
	Alb%	1	0.660	0.027
are included, the coefficients be-	Glob%	1	-0.660	0.027
ing reported in ascending proba-	Glob/g	3	0.654	0.029
bility value for the null hypothesis (R=0)	Ca	1	0.634	0.036